
Continuation-Passing C
Programming with a massive number of lightweight threads

Gabriel Kerneis, Juliusz Chroboczek
Laboratoire PPS

Université Paris Diderot, France

PLACES, Saarbrücken, 2 April 2011



Writing high-concurrency servers

Efficient concurrency in C:

scaling your server to thousands of clients...

and running it on your

pocket calculator.

Gabriel Kerneis, Juliusz Chroboczek 2 Saarbrücken, 2 April 2011



Threads and events

Threads Events
heavyweight, easy lightweight, crazy

Gabriel Kerneis, Juliusz Chroboczek 3 Saarbrücken, 2 April 2011



Lightweight threads

Many user-space libraries provide
lightweight threads.

A few compiler-based frameworks too.
Capriccio, Tamer

Often restricted to cooperative threads.

Gabriel Kerneis, Juliusz Chroboczek 4 Saarbrücken, 2 April 2011



Continuation-Passing C

Continuation-Passing C provides

“CPC threads”, compiled to

• event-driven code, or

• native threads

at the programmer’s choice.

cpc_spawn { printf("world\n"); }
printf("Hello... ");

Gabriel Kerneis, Juliusz Chroboczek 5 Saarbrücken, 2 April 2011



Threads for free, everywhere

CPC threads are lightweight.

It has an impact on your
programming style.

Threads are CPC’s unit of modularity.

Gabriel Kerneis, Juliusz Chroboczek 6 Saarbrücken, 2 April 2011



Learning CPC programming

Let’s try and discover new idioms,
writing a non-negligible program.

Hekate is a BitTorrent server

written in CPC by undergrads,

designed to handle thousands of clients.

Gabriel Kerneis, Juliusz Chroboczek 7 Saarbrücken, 2 April 2011



Outline

Cooperative CPC threads

Detached (native) threads

Hybrid programming

Gabriel Kerneis, Juliusz Chroboczek 8 Saarbrücken, 2 April 2011



Cooperative CPC threads

Gabriel Kerneis, Juliusz Chroboczek 9 Saarbrücken, 2 April 2011



Really lightweight threads

Cooperative CPC threads are compiled to
event-handlers.

Hekate spawns three CPC threads per client.

Gabriel Kerneis, Juliusz Chroboczek 10 Saarbrücken, 2 April 2011



Shared-memory without locks

The list of pending chunks is shared
and accessed cooperatively (no lock).

Gabriel Kerneis, Juliusz Chroboczek 11 Saarbrücken, 2 April 2011



Synchronisation

A single simple synchronisation primitive:
condition variables.

Gabriel Kerneis, Juliusz Chroboczek 12 Saarbrücken, 2 April 2011



Managing timeouts

A new timeout thread is spawned
for every read.

A lot of very short-lived threads.
Easy. Efficient.

Gabriel Kerneis, Juliusz Chroboczek 13 Saarbrücken, 2 April 2011



Detached (native) threads

Gabriel Kerneis, Juliusz Chroboczek 14 Saarbrücken, 2 April 2011



When cooperating is not enough

Cooperating threads are fast and easier to use.

But sometimes, you need native threads:

• blocking OS interfaces,

• blocking external libraries,

• parallelism (not in Hekate yet).

Gabriel Kerneis, Juliusz Chroboczek 15 Saarbrücken, 2 April 2011



Detached (native) threads

The programmer can switch a thread
between cooperative and native mode

on-the-fly.

Gabriel Kerneis, Juliusz Chroboczek 16 Saarbrücken, 2 April 2011



Detached (native) threads

Lots of magic to make this efficient
(thread pools, non-blocking queues).

Gabriel Kerneis, Juliusz Chroboczek 17 Saarbrücken, 2 April 2011



Detached (native) threads in Hekate

Blocking interface: getaddrinfo (DNS).

cpc_detached {
rc = getaddrinfo(name, ...);
return rc;

}

Another example: libcurl (HTTP requests).

Gabriel Kerneis, Juliusz Chroboczek 18 Saarbrücken, 2 April 2011



Hybrid programming

Gabriel Kerneis, Juliusz Chroboczek 19 Saarbrücken, 2 April 2011



Hybrid programming

Combining events for efficient concurrency and
threads for blocking parts.

Many “event-driven” programs are actually
hybrid programs.

Gabriel Kerneis, Juliusz Chroboczek 20 Saarbrücken, 2 April 2011



Uniform primitives

CPC makes hybrid programming
pleasant and easy.

CPC primitives are well-behaved
in both attached and detached mode

(except condition variables).

“Write once, run in every mode.”

Gabriel Kerneis, Juliusz Chroboczek 21 Saarbrücken, 2 April 2011



Blocking disk reads

Disk reads are slow: might block if the data is
not in cache.

Using a native thread: avoids blocking, but
heavyweight.

Using a cooperative thread: efficient,
but you need to prefetch data into the cache.

Gabriel Kerneis, Juliusz Chroboczek 22 Saarbrücken, 2 April 2011



Blocking disk reads

prefetch(data); yield();
if cached(data)

then send(data);
else yield();

if cached(data)
then send(data);
else detach();

send(data);
attach();

fi
fi
Gabriel Kerneis, Juliusz Chroboczek 23 Saarbrücken, 2 April 2011



Conclusion

Programming with CPC is pleasant and
convenient.

Having many threads yields a different
programming style.

The resulting code is efficient:
performance similar to hand-written

event-driven code.

Gabriel Kerneis, Juliusz Chroboczek 24 Saarbrücken, 2 April 2011



Appendix

Gabriel Kerneis, Juliusz Chroboczek 25 Saarbrücken, 2 April 2011



Blocking disk I/O: the code

prefetch(source, length); /* (1) */

cpc_yield(); /* (2) */

if(!incore(source, length)) { /* (3) */

cpc_yield(); /* (4) */

if(!incore(source, length)) { /* (5) */

cpc_detached { /* (6) */

rc = cpc_write(fd, source, length);

}

goto done;

}

}

rc = cpc_write(fd, source, length); /* (7) */

done:

...

Gabriel Kerneis, Juliusz Chroboczek 26 Saarbrücken, 2 April 2011


