
CPC: programming with a massive number of lightweight threads
Gabriel Kerneis

Université Paris Diderot
Paris, France

kerneis@pps.jussieu.fr

Juliusz Chroboczek
Université Paris Diderot

Paris, France

1 Introduction

Threads are a convenient and modular abstraction for writing concurrent programs. Unfortunately, threads,
as they are usually implemented, are fairly expensive, which often forces the programmer to use a
somewhat coarser concurrency structure than he would want to. The standard alternative to threads,
event-loop programming, allows much lighter units of concurrency; however, event-loop programming
splits the flow of control of a program into small pieces, which leads to code that is difficult to write and
even harder to understand [1, 8].

Continuation Passing C (CPC) [4, 6] is a translator that converts a program written in threaded style
into a program written with events and native system threads, at the programmer’s choice. Threads in
CPC, when compiled to events, are extremely cheap, roughly two orders of magnitude cheaper than in
traditional programming systems; this encourages a somewhat unusual programming style.

Together with two undergraduate students [2], we taught ourselves how to program in CPC by writing
Hekate, a BitTorrent seeder, a massively concurrent network server designed to efficiently handle tens
of thousands of simultaneously connected peers. In this paper, we describe a number of programming
idioms that we learnt while writing Hekate; while some of these idioms are specific to CPC, many should
be applicable to other programming systems with sufficiently cheap threads.

The CPC translation process itself is described in detail elsewhere [6].

2 Cooperative CPC threads

The extremely lightweight, cooperative threads of CPC lead to a “threads are everywhere” feeling that
encourages a somewhat unusual programming style.

Lightweight threads Contrary to the common model of using one thread per client, Hekate spawns at
least three threads for every connecting peer: a reader, a writer, and a timeout thread. Spawning several
CPC threads per client is not an issue, especially when only a few of them are active at any time, because
idle CPC threads carry virtually no overhead.

The first thread reads incoming requests and manages the state of the client. The BitTorrent protocol
defines two states for interested peers: “unchoked,” i.e. currently served, and “choked.” Hekate maintains
90 % of its peers in choked state, and unchokes them in a round-robin fashion.

The second thread is in charge of actually sending the chunks of data requested by the peer. It usually
sleeps on a condition variable, and is woken up by the first thread when needed. Because these threads are
scheduled cooperatively, the list of pending chunks is manipulated by the two threads without need for a
lock.

Each read on a network interface is guarded by a timeout, and a peer that has not been involved in
any activity for a period of time is disconnected. Earlier versions of Hekate which did not include this
protection would end up clogged by idle peers, which prevented new peers from connecting.

In order to simplify the protocol-related code, timeouts are implemented in the buffered read function,
which spawns a new timeout thread on each invocation. This temporary third thread sleeps for the duration

1

kerneis@pps.jussieu.fr


CPC: programming with a massive number of lightweight threads Kerneis, Chroboczek

cps void

listening(hashtable * table) {

/* ... */

while(1) {

cpc_io_wait(socket_fd, CPC_IO_IN);

client_fd = accept(socket_fd, ...);

cpc_spawn client(table, client_fd);

}

}

Figure 1: Accepting connections and spawning threads

of the timeout, and aborts the I/O if it is still pending. Because most timeouts do not expire, this solution
relies on the efficiency of spawning and context-switching short-lived CPC threads [4, 6].

Native and cps functions CPC threads might execute two kinds of code: native functions and cps
functions (annotated with the cps keyword). Intuitively, cps functions are interruptible and native functions
are not. From a more technical point of view, cps functions are compiled by performing a transformation
to Continuation Passing Style (CPS), while native functions execute on the native stack [6].

There is a global constraint on the call graph of a CPC program: a cps functions may only be called
by a cps function; equivalently, a native function can only call native functions. This means that at any
point in time, the dynamic chain consists of a “cps stack” of cooperating functions followed by a “native
stack” of regular C functions. Since context switches are forbidden in native functions, only the former
needs to be saved and restored when a thread cooperates.

Figure 1 shows an example of a cps function: listening calls the primitive cpc io wait to wait for
the file descriptor socket fd to be ready, before accepting incoming connections with the native function
accept and spawning a new thread for each of them.

3 Comparison with event-driven programming

Code readability Hekate’s code is much more readable than its event-driven equivalents. Consider for
instance the BitTorrent handshake, a message exchange occurring just after a connection is established.
In Transmission1, a popular and efficient BitTorrent client written in (mostly) event-driven style, the
handshake is a complex piece of code, spanning over a thousand lines in a dedicated file. By contrast,
Hekate’s handshake is a single function of less than fifty lines including error handling.

While some of Transmission’s complexity is explained by its support for encrypted connexions,
Transmission’s code is intrinsically much more messy due to the use of callbacks and a state machine
to keep track of the progress of the handshake. This results in an obfuscated flow of control, scattered
through a dozen of functions (excluding encryption-related functions), typical of event-driven code [1].

Expressivity Surprisingly enough, CPC threads turn out to be more expressive than native threads, and
allow some idioms that are more typical of event-driven style.

A case in point: buffer allocation for reading data from the network. When a native thread performs a
blocking read, it needs to allocate the buffer before the read system call; when many threads are blocked
waiting for a read, these buffers add up to a significant amount of storage. In an event-driven program,

1http://www.transmissionbt.com

2

http://www.transmissionbt.com


CPC: programming with a massive number of lightweight threads Kerneis, Chroboczek

it is possible to delay allocating the buffer until after an event indicating that data is available has been
received.

The same technique is not only possible, but actually natural in CPC: buffers in Hekate are only
allocated after cpc io wait has successfully returned. This provides the reduced storage requirements of
an event-driven program while retaining the linear flow of control of threads.

4 Detached threads

While cooperative, deterministically scheduled threads are less error-prone and easier to reason about
than preemptive threads, there are circumstances in which native operating system threads are necessary.
In traditional systems, this implies either converting the whole program to use native threads, or manually
managing both kinds of threads.

A CPC thread can switch from cooperative to preemptive mode at any time by using the the
cpc attach primitive (inspired by FairThreads’ ft thread link [3]). A cooperative thread is said to
be attached to the default scheduler, while a preemptive one is detached.

The cpc attach primitive takes a single argument, a scheduler, either the default event loop (for
cooperative scheduling) or a thread pool (for preemptive scheduling). It returns the previous scheduler,
which makes it possible to eventually restore the thread to its original state. Syntactic sugar is provided to
execute a block of code in attached or detached mode (cpc attached, cpc detached).

Hekate is written in mostly non-blocking cooperative style; hence, Hekate’s threads remain attached
most of the time. There are a few situations, however, where the ability to detach a thread is needed.

Blocking OS interfaces Some operating system interfaces, like the getaddrinfo DNS resolver in-
terface, may block for a long time (up to several seconds). Although there exist several libraries which
implement equivalent functionality in a non-blocking manner, in CPC we simply enclose the call to the
blocking interface in a cpc detached block (see Figure 2a).

Figure 2b shows how cpc detached is expanded by the compiler into two calls to cpc attach. Note
that CPC takes care to attach the thread before returning to the caller function, even though the return
statement is inside the cpc detached block.

cpc_scheduler *s =

cpc_detached { cpc_attach(cpc_default_threadpool);

rc = getaddrinfo(name, ...) rc = getaddrinfo(name, ...)

return rc; cpc_attach(s);

} return rc;

(a) (b)

Figure 2: Expansion of cpc detached in terms of cpc attach

Blocking library interfaces Hekate uses the curl library 2 to contact BitTorrent trackers over HTTP.
Curl offers both a simple, blocking interface and a complex, non-blocking one. We decided to use the one
interface that we actually understand, and therefore call the blocking interface from a detached thread.

Parallelism Detached threads make it possible to run on multiple processors or processor cores. Hekate
does not use this feature, but a CPU-bound program would detach computationally intensive tasks and let
the kernel schedule them on several processing units.

2http://curl.haxx.se/libcurl/

3

http://curl.haxx.se/libcurl/


CPC: programming with a massive number of lightweight threads Kerneis, Chroboczek

prefetch(source, length); /* (1) */

cpc_yield(); /* (2) */

if(!incore(source, length)) { /* (3) */

cpc_yield(); /* (4) */

if(!incore(source, length)) { /* (5) */

cpc_detached { /* (6) */

rc = cpc_write(fd, source, length);

}

goto done;

}

}

rc = cpc_write(fd, source, length); /* (7) */

done:

...

The functions prefetch and incore are thin wrappers around the posix madvise and mincore system calls.

Figure 3: An example of hybrid programming (non-blocking read)

5 Hybrid programming

Most realistic event-driven programs are actually hybrid programs [7, 9]: they consist of a large event
loop, and a number of threads (this is the case, by the way, of the Transmission BitTorrent client mentioned
above). Such blending of native threads with event-driven code is made very easy by CPC, where
switching from one style to the other is a simple matter of using the cpc_attach primitive.

This ability is used in Hekate for dealing with disk reads. Reading from disk might block if the data is
not in cache; however, if the data is already in cache, it would be wasteful to pay the cost of a detached
thread. This is a significant concern for a BitTorrent seeder because the protocol allows requesting chunks
in random order, making kernel readahead heuristics useless.

The actual code is shown in Figure 3: it sends a chunk of data from a memory-mapped disk file
over a network socket. In this code, we first trigger an asynchronous read of the on-disk data (1), and
immediately yield to threads servicing other clients (2) in order to give the kernel a chance to perform the
read. When we are scheduled again, we check whether the read has completed (3); if it has, we perform a
non-blocking write (7); if it hasn’t, we yield one more time (4) and, if that fails again (5), delegate the
work to a native thread which can block (6).

Note that this code contains a race condition: the prefetched block of data could have been swapped
out before the cpc write completes. This is too unlikely to occur, however, to be of concern. Note
further that the call to cpc write in the cpc detached block (6) could be replaced by a call to write:
we are in a native thread here, so the non-blocking wrapper is not needed. However, the CPC runtime
is smart enough to detect this case, and cpc write simply behaves as write when invoked in detached
mode; for simplicity, we choose to use the CPC wrappers throughout our code.

6 Experimental results

Benchmarking a BitTorrent seeder is a difficult task because it relies either on a real-world load, which is
hard to control and only provides seeder-side information, or on an artificial testbed, which might fail to
accurately reproduce real-world behaviour. Our experience with Hekate in both kinds of setup shows that
CPC generates efficient code, lightweight enough to run Hekate on embedded hardware. This confirms
our earlier results [5], where me measured the performance of toy web servers.

4



CPC: programming with a massive number of lightweight threads Kerneis, Chroboczek

Real-world workload To benchmark the ability of Hekate to sustain a real-world load, we need popular
torrents with many requesting peers over a long period of time. Updates for Blizzard’s game World of
Warcraft (WoW), distributed over BitTorrent, meet those conditions: each of the millions of WoW players
around the world runs a hidden BitTorrent client, and at any time many of them are looking for the latest
update.

We have run an instance of Hekate seeding WoW updates without interruption for weeks. We saw up
to 1,000 connected peers (800 on average) and a throughput of up to 10 MB/s (around 5 MB/s on average).
Hekate never used more than 10 % of the 3.16 GHz dual core CPU of our benchmarking machine.

Stress-test on embedded hardware We have ported Hekate to OpenWrt3, a Linux distribution for
embedded devices. Hekate runs flawlessly on a MIPS-based router with a 266 MHz CPU, 32 MB of RAM
and a 100 Mbps network card. The torrent files were kept on a USB key.

Because Hekate maps every file it serves in memory, and the MIPS routers running OpenWrt are
32-bit machines, we are restricted to no more than 2 GB of content. Our stress-test consists in 1,000
clients, requesting random chunks of a 1.2 GB torrent from a computer directly connected to the device.
Hekate sustained a throughput of 2.9 MB/s. The CPU was saturated, mostly with software interrupt
requests (60 % sirq, the usb-storage kernel module using up to 25 % of CPU).

7 Conclusions

Hekate has shown that CPC is a tool that is able to produce efficient network servers, even when used
by people who do not fully understand its internals and are not specialists of network programming.
While writing Hekate, we had a lot of fun exploring the somewhat unusual programming style that CPC’s
lightweight, hybrid threads encourage.

We have no doubt that CPC, possibly with some improvements, will turn out to be applicable to a
wider range of applications than just network servers, and are looking forward to experimenting with
CPU-bound distributed programs.

References
[1] A. Adya, J. Howell, M. Theimer, W. J. Bolosky, and J. R. Douceur. Cooperative task management without

manual stack management. In Proceedings of the 2002 USENIX Annual Technical Conference, 2002.
[2] P. Attar and Y. Canal. Réalisation d’un seeder bittorrent en CPC, June 2009. Rapport de stage.
[3] F. Boussinot. FairThreads: mixing cooperative and preemptive threads in C. Concurrency and Computation:

Practice and Experience, 18(5):445–469, 2006.
[4] J. Chroboczek. Continuation-passing for C: a space-efficient implementation of concurrency. Technical report,

PPS, Université Paris 7, 2005.
[5] G. Kerneis and J. Chroboczek. Are events fast? Technical report, PPS, Université Paris 7, 2009.
[6] G. Kerneis and J. Chroboczek. Continuation-Passing C, compiling threads to events through continuations.

Submitted for publication, 2010.
[7] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: an efficient and portable web server. In Proceedings of the

1999 USENIX Annual Technical Conference, 1999.
[8] R. von Behren, J. Condit, and E. Brewer. Why events are a bad idea (for high-concurrency servers). In

Proceedings of the 9th conference on Hot Topics in Operating Systems, 2003.
[9] M. Welsh, D. Culler, and E. Brewer. SEDA: an architecture for well-conditioned, scalable internet services.

SIGOPS Oper. Syst. Rev., 35(5):230–243, 2001.

3http://openwrt.org

5

http://openwrt.org

	Introduction
	Cooperative CPC threads
	Comparison with event-driven programming
	Detached threads
	Hybrid programming
	Experimental results
	Conclusions

