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Abstract
Coroutines and events are two common abstractions for writing
concurrent programs. Because coroutines are often more conve-
nient, but events more portable and efficient, it is natural to want
to translate the former into the latter. CPC is such a source-to-
source translator for C programs, based on a partial conversion into
continuation-passing style (CPS conversion) of functions annotated
as cooperative.

In this article, we study the application of the CPC translator to
QEMU, an open-source machine emulator which also uses annotated
coroutine functions for concurrency. We first propose a new type
of annotations to identify functions which never cooperate, and we
introduce CoroCheck, a tool for the static analysis and inference
of cooperation annotations. Then, we improve the CPC translator,
defining CPS conversion as a calling convention for the C language,
with support for indirect calls to CPS-converted function through
function pointers. Finally, we apply CoroCheck and CPC to QEMU
(750 000 lines of C code), fixing hundreds of missing annotations
and comparing performance of the translated code with existing
implementations of coroutines in QEMU.

Our work shows the importance of static annotation checking to
prevent actual concurrency bugs, and demonstrates that CPS conver-
sion is a flexible, portable, and efficient compilation technique, even
for very large programs written in an imperative language.

Categories and Subject Descriptors D.1.3 [Programming Tech-
niques]: Concurrent Programming

Keywords Coroutines; CPS conversion; static analysis.

1. Introduction
Most computer programs are concurrent programs, which need to
perform several tasks at the same time. For example, a network
server needs to serve multiple clients at a time; a GUI needs to
handle multiple keyboard and mouse inputs; and a network program
with a graphical interface (e.g. a virtual machine with an emulated
network card) needs to do both simultaneously.
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Threads and events There are many different techniques to imple-
ment concurrent programs. A very common abstraction is provided
by threads. In a threaded program, concurrent tasks are executed
by a number of independent threads which communicate through a
shared memory heap. Threads are generally either native threads,
preemptively scheduled by the Operating System (OS), or user-
space threads, cooperatively scheduled by a library.

An alternative to threads is event-driven programming. An event-
driven program interacts with its environment by reacting to a set
of stimuli called events. At any given point in time, to every event
is associated a piece of code known as the handler for this event.
A global scheduler, known as the event loop, repeatedly waits for
an event to occur and invokes the associated handler. Performing
a complex task requires to coordinate several event handlers by
exchanging appropriate events.

Unlike threads, event handlers do not have an associated stack;
event-driven programs are therefore more lightweight and often
faster than their threaded counterparts [33, 44]. They are also more
portable than native threads, because they do not require OS support
for task switching. However, because it splits the flow of control
into multiple tiny event handlers, event-driven programming is
generally deemed more difficult and error-prone [5], in particular
in imperative languages such as C with no support for closures and
first-class functions. Additionally, because of its cooperative nature,
event-driven programming alone is often not powerful enough, in
particular when accessing blocking APIs or using multiple processor
cores; it is then necessary to write hybrid code, that uses both native
threads and event handlers, which is even more difficult.

Continuation-Passing C Since event-driven programming is
more difficult but more efficient than threaded programming, it is
natural to want to at least partially automate it. Continuation-Passing
C (CPC [24]) is an extension of the C programming language for
writing concurrent systems, built on top of the C Intermediate
Language (CIL) framework [32]. The CPC programmer manipu-
lates very lightweight threads, annotating cooperative functions and
choosing whether they should be cooperatively or preemptively
scheduled at any given point. The CPC program is then compiled in
two steps: it is first processed by the CPC translator, which produces
highly-efficient sequentialized event-driven code, and then linked
with the CPC runtime, a small optimised C library scheduling the
continuations introduced by the CPC translator. The translation from
annotated cooperative functions into events is performed by a series
of classical source-to-source program transformations: splitting of
the control flow into mutually recursive nested functions, lambda
lifting of these functions, and CPS conversion. This approach retains
the best of both worlds: the relative convenience of programming
with threads, and the low memory usage of event-loop code.



The QEMU emulator Quick EMUlator (QEMU [7]) is an open-
source machine emulator and virtualizer that supports 16 CPU
architectures and many individual devices including network cards,
storage controllers, and graphics cards. Code execution is done either
through dynamic translation, or through hardware virtualization
support available in modern x86 CPUs. It is a large and complex
project: 750 000 lines of code written by 645 contributors over more
than 10 years.

Running a guest system with QEMU involves executing guest
code, handling timers, processing I/O, and responding to the man-
agement console. Performing all these tasks at once requires an
architecture capable of mediating resources in a safe way without
pausing guest execution if a disk I/O or a command from the man-
agement console takes a long time to complete. QEMU uses a hybrid
architecture that combines event-driven programming with threads.

To simplify the event-driven part, QEMU uses coroutines. Corou-
tines are an old control abstraction, commonly characterised by the
ability to resume and suspend execution, as well to preserve the val-
ues of local data between successive calls. Among the many existing
styles of coroutines [14], QEMU implements first-class, stackful,
asymmetric coroutines, with no value passing upon suspension and
resumption. As a result, programming with QEMU coroutines feels
a lot like programming with threads, with the exception that coop-
erating passes control back to the parent coroutine instead of some
global scheduler. Each coroutine is responsible for registering itself
with the main event loop before yielding.

Similarly to CPC, QEMU functions that should be executed
within coroutines are annotated. These annotations are not intended
to drive a source-to-source transformation with static checking, but
they are an essential piece of documentation for developers to write
correct coroutine code. However, they are never statically checked.

Coroutines in QEMU are implemented in a platform-dependent
manner. There are currently two classes of coroutine implementa-
tions: stack-switching backends, which allocate a new stack for each
coroutine and perform a context switch when entering and yielding;
and thread-based backends, which create a new thread for each
coroutine and use synchronization primitives to ensure that only
one coroutine runs at a given time and that control is transferred in
the correct order. The former use non-portable functions, such as
sigaltstack and swapcontext on Unix, and SwitchToFiber
on Windows: the context switch is triggered from user-space, and
in most cases involves only a cheap function call to set the current
stack pointer. The latter is built on top of GLib’s threads, a more
portable but slower approach.

These approaches can be made to work well but require main-
tenance and a relatively high porting effort when targeting new
platforms. Consequently, new QEMU ports sometimes only use
the slower thread-based backends. The stack-switching backends
require in-depth knowledge of the CPU architecture and low-level
support for switching the runtime stack and process context such as
signal masks.

The maintenance cost of coroutine backends, and the lack of
static verification of coroutine annotations, create a need for a new
approach that offers safety guarantees, and good portability with no
performance degradation.

Our approach in this paper is to process the whole QEMU source
code with the CPC translator in order to convert it to continuation-
passing style, and then link the resulting code with a new, portable
coroutine backend for QEMU based on continuations. Therefore, we
reuse the CPC translator, but not the original CPC runtime: the point
of our work is indeed not to rewrite QEMU in the CPC language, but
to use the CPC compilation technique to implement the coroutine
API defined by QEMU.

Overview of the paper
This article is a case study in applying CPS conversion and static
analysis on a large C program, to implement safe, portable and
efficient coroutines.

Contributions We make the following contributions:

1. a new type of annotations to mark blocking functions;

2. CoroCheck, a tool for the static analysis and inference of
cooperation and blocking annotations, used to rectify hundreds
of annotations in QEMU, a real-world open-source project of
over 750 000 lines of C code;

3. a performance comparison of continuation-based coroutines to
several other existing implementations of coroutines for QEMU.

Our work shows the importance of static annotation checking
to prevent actual concurrency bugs, and demonstrates that CPS
conversion — as implemented by the CPC translator — is a flexible,
portable, and efficient compilation technique, even for very large
programs written in an imperative language.

Outline We first give an overview of related work (Section 2), and
QEMU coroutines (Section 3). Then, we introduce CoroCheck, our
tool for the static analysis and inference of coroutine annotations
(Section 4). Next, we present the CPC transformation technique
(Section 5), and dive into the challenges associated with applying
CPS conversion to QEMU (Section 6). Finally, we evaluate perfor-
mance results (Section 7), and conclude (Section 8).

Timeline The work described has been carried out over the course
of three months, in the context of a Google Summer of Code project.
The second author, who had no prior knowledge of either QEMU
or CPC, is the sponsored student. The first and third authors co-
mentored his work, respectively for the CPC and QEMU sides of
the project. The timeline went roughly as follows:

Before the begining of the project The first author spent two
weeks improving CIL (Section 6.1) and CPC (Section 6.2).

First month The second author studied the implementation of
the CPC translator and runtime, QEMU coroutines, and im-
plemented a prototype of the coroutine-cpc backend (Sec-
tion 6.3).

Second month The second author started adding missing coroutine
annotations in the block layer (Section 4.1), to compile two
small, stand-alone utilities provided by QEMU (qemu-img and
qemu-io). To support his refactoring effort, the first author spent
a few days writing a first prototype of CoroCheck, a tool for the
static analysis of coroutine annotations (Section 4.2), and two
more weeks adding a plug-in mechanism to CIL and rewriting
CoroCheck as a CIL plug-in.

Third month The second author published two series of patches
adding coroutine annotations to QEMU, and improved them
with the help of the third author and other QEMU develop-
ers. After some minor clean-up and optimisations, the first
author was able to run a virtual machine using QEMU with
a coroutine-cpc backend, and perform micro- and macro-
benchmarks (Section 7).

Software availability The code developed as part of this work is
available as free software. Whenever possible, the changes have
been integrated directly in the original projects that we had to
adapt (CIL [1], CPC [3], QEMU [4]). Our new tool CoroCheck
is also available in its own repository [2]. Some patches for the CPC
backend of QEMU1 are still pending review by the QEMU team at
the time of writing.

1 Available online at http://github.com/kerneis/qemu/.

http://github.com/kerneis/qemu/


2. Related work
Continuations and concurrency Delimited continuations are the
general abstraction to think of threads, events and coroutines. A
delimited continuation can be realized in many ways: as a stack
implicitly associated with a thread, as an explicitly copied part of
the stack, as a sequence of activation frames stored on heap or in
a data structure (as happens in continuation-passing style), or as
a closure (an event handler). In functional languages, thread-like
primitives are commonly built either on top of first-class (delimited)
continuations, or encapsulated within a continuation monad.

The former approach is best illustrated by Concurrent ML con-
structs [35], implemented on top of SML/NJ’s first-class contin-
uations, or by the way coroutines are typically implemented in
Scheme using the call/cc operator [20]. More recently, Scala
uses first-class delimited continuations to implement concurrency
primitives [18, 36]. Anton and Thiemann build pure OCaml corou-
tines [6] on top of Kiselyov’s delimcc library for delimited continu-
ations [27].

Explicit translation into continuation-passing style, often en-
capsulated within a monad, is used in languages lacking first-
class continuations. In Haskell, Claessen proposes a monad trans-
former yielding a concurrent version of existing monads [10]. Li
and Zdancewic also use a monadic approach to build event-driven
network servers [29]. In OCaml, Vouillon’s Lwt [43] provides a
lightweight alternative to native threads. The asynchronous model in
F# is implemented with a localized continuation-passing translation
of control-flow and a heap-based allocation of the closures, using
three continuations for success, exceptions and cancellation [41].

From threaded to event-driven style In imperative languages,
first-class continuations are generally not available and monadic
style extremely inconvenient. This makes program transformation
techniques more widespread, with two main approaches: translating
loops and gotos into state machines [8], or converting functions into
continuation-passing style [34, 40].

Deriving state-machines from a threaded-style code is as old
as Duff’s device [15]. Implementations have then been improved
in multiple directions: as C preprocessor macros [16], as source-
to-source transformations on C++ [28] or Java [17] programs, as a
transformation on JVM bytecode [38], or as LLVM code blocks and
macros based on GCC’s nested functions [19].

CPS conversion for imperative languages is less common, proba-
bly because it is harder to implement and prove correct. CPS conver-
sion has been applied at least to C [26], C++ [30], and Javascript [31].
To the best of our knowledge, CPC is the only public implementa-
tion for the C language, as well as the only one using lambda-lifting
to avoid the runtime overhead of environments [24].

The main downside of these program transformation techniques
is that CPS conversion changes function signatures, which makes it
harder to mix concurrent functions with external libraries expecting
callbacks. Unsurprisingly, similar issues arise when using events
and threads simultaneously; Adya et al. show how to use adaptors
to connect both styles [5].

Static verification of real-world programs The constraint that
only cooperative functions can call cooperative functions is a very
natural and common one in concurrent systems. In functional
languages with a static type-checking, it is generally enforced
by the monadic structure or the type system itself [10, 36, 43].
Interestingly enough, authors of similar systems for imperative
languages commonly acknowledge that static checking would be
preferable, but do not implement it [5, 19]. It seems that Kilim
statically checks @pausable annotations, although the authors do
not mention it explicitly [38].

There is a long history of static analysis to enforce safety
properties, in particular for real-world programs written in languages
lacking a strong type system [12, 13]. However, most of them require
to add explicit annotations in ad-hoc domain-specific languages.
A noteworthy exception is Dialyzer, a static analyser reusing the
annotation format already found in the documentation of many
Erlang programs [37].

3. QEMU coroutines
As described in Section 1, QEMU is an open source machine
emulator and virtualizer using a hybrid architecture that combines
event-driven programming with threads. The use of threads mitigates
two well-known limitations of event-driven architectures: an event
loop cannot take advantage of multiple cores because it only has
a single thread of execution; and long-running computations or
blocking system calls freeze every task in the event loop, not only
the current one. Nevertheless, the core of QEMU is event-driven
and most code executes in that environment.

The main event loop is executed by a dedicated thread, called
iothread. When a file descriptor becomes ready, or when a timer
expires, it invokes a callback that responds to the event. On the other
hand, guest code is executed by a number of vcpu threads, one per
virtual (emulated) CPU. In addition, worker threads are also used to
offload blocking operations outside of the main loop.

In 2011, in response to an increase of complexity in asyn-
chronous code, QEMU developers began to use coroutines to run
concurrent tasks in the iothread without splitting them into individ-
ual callback functions [45]. A coroutine has its own stack and is
therefore able to preserve state across blocking operations, which
traditionally require callback functions and manual marshalling of
parameters. Coroutines are now used heavily in the block layer, the
subsystem that provides access to disk image files and supports
background operations like live storage migration. Coroutines allow
tasks requiring multiple disk updates to be expressed as sequential
code rather than breaking them (in event-driven style) into many
functions and explicitly passing on local variables.

3.1 Coroutine API
QEMU is written in C. Since the C programming language does not
include support for coroutines, QEMU uses its own implementation
that is based on two annotations, two type definitions and five
functions (Figure 1).

#define coroutine_fn /* implementation-dependent */
#define blocking_fn /* implementation-dependent */
typedef struct Coroutine Coroutine;
typedef void coroutine_fn CoroutineEntry(void *);
Coroutine *qemu_coroutine_create(CoroutineEntry *);
void qemu_coroutine_enter (Coroutine *, void *);
void coroutine_fn qemu_coroutine_yield(void);
bool qemu_in_coroutine(void);
Coroutine * coroutine_fn qemu_coroutine_self(void);

Figure 1. Coroutine interface in QEMU

Creating and starting a coroutine is very straightforward:

coroutine = qemu_coroutine_create(my_coroutine);
qemu_coroutine_enter(coroutine, my_data);

The function qemu_coroutine_create takes an entry function
that will be run inside a new coroutine, and returns a pointer
to an opaque structure Coroutine, or coroutine handler. The
entry function must be of type CoroutineEntry, i.e. taking
an opaque void* pointer and returning nothing. The function
qemu_coroutine_enter transfers control to the coroutine.



The coroutine then executes until it returns, in which case it is
automatically freed, or yields:

void coroutine_fn my_coroutine(void *opaque) {
MyData *my_data = opaque;
/* ... do some work ... */
qemu_coroutine_yield();
/* ... do some more work ... */

}

Yielding is done either directly by calling qemu_coroutine_yield,
or indirectly by calling a function that yields (itself directly
or indirectly). Yielding switches control back to the caller of
qemu_coroutine_enter. This is typically used to switch back
to the main thread’s event loop after issuing an asynchronous
I/O request. The request callback will then invoke the function
qemu_coroutine_enter once more to switch back to the corou-
tine.

Finally, the QEMU coroutine interface provides a simple intro-
spection mechanism based on two functions: qemu_in_coroutine
can be used to check if the current function is executed in coroutine
context, and qemu_coroutine_self to get a pointer to the current
coroutine if this is the case.

3.2 Coroutine and blocking annotations
Functions that are run inside a coroutine and may yield are called
coroutine functions, and annotated with coroutine_fn. Note that
any function that calls a coroutine function is prone to yielding
itself. Therefore, a coroutine function may only be called by another
coroutine function; in other words, it is forbidden to call a coroutine
function from a non-coroutine, native function. Coroutine functions,
on the other hand, are allowed to call native functions. Coroutine
annotations are used twice in the coroutine API (Figure 3): coroutine
entry points (CoroutineEntry) must be coroutine functions, since
they are executed in a coroutine, and qemu_coroutine_yield is
of course annotated as a coroutine function.

Blocking functions, on the other hand, are native functions
that must not be called from a coroutine; they are annotated with
blocking_fn. We introduce this new annotation, which did not
exist in QEMU before this work, to identify native functions that
could block the main event loop for a long time and have a coroutine
equivalent that should be used instead. Note that in principle, it
would be even safer to consider every native function as potentially
blocking, and annotate explicitly those that we wish to allow in
coroutine context; however, such a white-list mechanism would be
intractable in practice on a project of the size of QEMU, and we
opted for a black list of blocking functions instead.

One important limitation of QEMU before our work was that
these global constraints on the function call graph were not en-
forced in any way: as shown in Figure 1, coroutine_fn and
blocking_fn are simply defined as empty macros by default, hence
discarded from the final source-code by the C preprocessor. We dis-
cuss in Sections 6.2 and 4 how to give them a rigorous semantics,
and how to check that annotated functions are used correctly.

3.3 Indirect coroutine calls
QEMU uses indirect coroutine calls and function pointers to corou-
tine functions intensively. We have seen in Figure 1 that every call to
qemu_coroutine_create involves a pointer to a coroutine func-
tion, but this is far from the only place where they are used.

As explained above, coroutines are mainly used to provide non-
blocking accesses to emulated disk images in the iothread. To
support multiple disk image formats in an extensible way, the block
layer of QEMU defines a generic block driver interface (Figure 2).
This interface consists in a set of more than 40 callback functions
that each driver needs to implement; among them, 17 are coroutine
functions.

struct BlockDriver {
const char *format_name;
int (*bdrv_probe_device)(const char *filename);
int coroutine_fn (*bdrv_co_flush_to_os)

(BlockDriverState *bs);
/* ... */

};

Figure 2. Native and coroutine callbacks in block driver interface

The block layer then uses this abstract interface to implement
I/O operations, performing many indirect calls to coroutine func-
tions provided by each driver. For instance, the coroutine function
brdv_co_flush calls the coroutine callback brdv co flush to
os.

int coroutine_fn
bdrv_co_flush(BlockDriverState *bs)
{

/* Write back cached data to the OS */
if (bs->drv->bdrv_co_flush_to_os) {
int ret = bs->drv->bdrv_co_flush_to_os(bs);
if (ret < 0) {

return ret;
}

}
/* ... */

}

To preserve the coroutine constraint on the call graph, it is essential
that function pointers be explicitly annotated. Coroutine annotations
on function declarations and definitions alone are not enough to
ensure the correctness of coroutine calls.

4. Static analysis of coroutine annotations
Coroutine annotations are not only useful to document which
functions might block the event loop, and which ones can safely be
used in a non-blocking way. In an event-driven program, as well as
in a concurrent system with cooperative threads or coroutines, the
main loop acts as a global lock, and it is common for programmers
to rely on it to synchronise access to shared resources or preserve
global invariants. Even in a stack-switching approach to coroutines,
calling a coroutine function outside of coroutine context can then
lead to serious bugs.

Ironically, such a bug occurred in QEMU during the course of
our study. The code responsible for throttling disk I/O was causing
a segmentation fault because a function to reschedule coroutines,
qemu_co_queue_next, was missing a coroutine annotation and
was called from native functions. It remained broken for two months
before Canet identified the bug and fixed it [9]. However, as we
discovered later when checking statically the impacted file, the fix
itself still misses some coroutine annotations: getting all of them
correct without some form of automated verification is a daunting
task (see Section 4.3 for more details).

The CPC translator enforces this rule statically, because it needs
correct annotations to drive its transformation. However, it only
performs limited checking and is not convenient to analyse and infer
coroutine annotations on a large scale (Section 4.1). The fact that
it interleaves the analysis of coroutine annotations with source-to-
source transformations increases the opportunities for bugs, and
makes it harder to add new features. In order to fix a large number
of annotations in an efficient and reliable way, we decided to write
CoroCheck, a generic tool for the static analysis and inference of
coroutine annotations, designed to be usable for CPC, QEMU, or
any C other library with coroutine annotations (Section 4.2).



We illustrate the use of CoroCheck on a small example from
QEMU in Section 4.3, and evaluate the number of annotations that
CoroCheck enabled us to fix in QEMU in Section 4.4.

4.1 Missing coroutine annotations
In theory, it should have been enough to change a single line in the
header file coroutine.h to make the CPC translator recognize and
convert coroutine functions in QEMU:2

#define coroutine_fn __attribute__((cps))

In practice, however, this early attempt failed because many corou-
tine annotations in QEMU were missing, and CPC produced hun-
dreds of errors caused by inconsistent annotations. As shown in
Table 1 (Section 4.4, more than 70 % of the coroutine annotations
required to compile QEMU were missing. In hindsight, this should
have come as no surprise. As explained in Section 3, coroutine an-
notations are used exclusively for documentation purposes. QEMU
is a very large project, and not every contributor understands how
the coroutine mechanism works. Even fewer keep in mind the rules
about coroutine annotations, and mistakes easily go unnoticed since
there is no automated check to detect them.

A naive approach to fix coroutine annotations is to blindly follow
the error messages reported by the CPC translator: adding missing
annotations where errors are reported, which will produce more
errors at the call points of these newly annotated functions, and
iterating until one reaches a fixed-point. Apart from being extremely
tedious, there are two reasons why this naive approach does not
work well, or even at all in the case of QEMU: spurious annotations
and hybrid functions.

Spurious annotations There is a risk of introducing too many
annotations. Each illegal call to a coroutine function from a native
function can be fixed either by annotating the caller, or by wrapping
the callee in a native function allocating a dedicated coroutine for
this call. This is a design choice that only the programmer can
make, based on the concurrent structure of the program: it would
be unreasonable to systematically add annotations all the way to
the main function at the root of the call graph because of a single
annotation at one of the leaves.

Conversely, it is sometimes a deliberate choice to spuriously an-
notate functions which do not call any other coroutine functions, e.g.
for documenting the intention and further plans to add cooperation
in some place of the code. Hence spurious annotations should not
be removed automatically.

Hybrid functions Hybrid functions use qemu_in_coroutine to
check dynamically whether they are called in coroutine context, and
execute a different code path in each case. Such functions do not
work with CPC, and need to be rewritten to split the coroutine and
native code paths.

The need for blocking functions (Section 3.2) arose mainly when
splitting hybrid functions into a native and a cooperative version.
Annotating the native one as a blocking function would make sure
that it is not called by mistake from a coroutine, which would block
the whole event loop. Both the splitting of hybrid functions and the
introduction of the blocking_fn annotation were discussed with
and approved by QEMU developers — several of them considered
hybrid functions as a temporary work-around, used to ease the
transition when coroutines were first introduced in QEMU.

4.2 CoroCheck
CoroCheck is a generic tool for the static analysis and inference of
coroutine annotations, written in OCaml. To make CoroCheck easily
available and usable by as many QEMU developers as possible, we

2 See Section 6.2 for an explanation of attribute ((cps)).

extended CIL with a modular plug-in system, and wrote CoroCheck
as a CIL plug-in. This improves the previous cumbersome CIL
architecture, which required users to recompile their own version to
add new features, and should make it easier for every programmer
to distribute analysis and program transformation tools based on
CIL in the future.

CoroCheck analyses one C file at a time. It assumes that corou-
tine functions and function pointers are marked with an attribute,3

as detailed in Section 6.2, and that the prototypes of functions imple-
mented outside of the analysed file are correctly annotated. This is a
necessary assumption, since CoroCheck has no means to determine
whether extern functions are actually cooperative or not.

Assuming the correctness of external annotations implies that
the programmer is responsible for analysing the files in a topological
order based on their dependencies, or to iterate the analysis over the
whole project until reaching a fixed-point. This proved not to be a
problem in practice.

For each file that it analyses, CoroCheck performs a coroutine
annotation inference, prints warnings for missing and spurious an-
notations, outputs an annotated call graph to help the programmer
analyse and fix those errors, and checks that type casts and assign-
ments respect coroutine annotations. We detail each of these steps
in the rest of this section.

Coroutine annotation inference CoroCheck builds a directed
graph of the functions calls in the analysed file, with a node for
each function (either defined in the file, or simply declared), and
edges from caller to callee. It then uses the Fixpoint module of
the Ocamlgraph library [11] to propagate coroutine annotations. As
explained above, we start with the coroutine functions implemented
outside of the current file as a trusted root, and propagate the
annotations backwards to their callers until we reach a fixed-point.

There is in fact another class of functions that we add to the roots
of the algorithm: coroutine functions which have their address re-
tained in a function pointer. This turned out to be necessary to avoid
generating too many warnings about spurious annotations: when a
function is used to implement an interface such as BlockDriver
(Figure 2), it is essential to obey the annotation constraints man-
dated by the interface. For further safety, CoroCheck also verifies
automatically that these function pointers are used consistently.

CoroCheck then iterates over every function defined in the file
and prints warnings when the inferred coroutine annotation does
not match the original one. It also warns if a blocking function is
inferred as cooperative, or called from a coroutine function (either
inferred or annotated in the original file).

Annotated call graph As explained in Section 4.1, blindly follow-
ing CoroCheck suggestions for annotating coroutine functions is not
necessarily enough: one might need to refactor an interface or split a
hybrid function for example. Having a per-file graphical view of the
function call graph proves very helpful in understanding the reasons
for the suggested fixes and analysing the root causes of erroneous
annotations.

CoroCheck uses Ocamlgraph facilities to output a file that can
be processed with the dot utility (from the GraphViz project) to
generate an image representing the annotated function call graph.
Consider for example the input program in Figure 3; it yields the
output shown in Figure 4.

Functions inferred as coroutine functions are represented in
rectangles; native functions in ovals. Annotations provided by
the programmer, on the other hand, are printed within the boxes
(coroutine fn or blocking fn in Figure 4). For indirect calls,
since the name of the called function is unknown, we print

3 The name of the attribute is coroutine fn by default, and configurable
with a command-line option.



coroutine_fn coro blocking_fn blocknative

coroutine_fn spurious

coroutine_fn good missing

coroutine_fn call_missingblocking_fn wrong

call_blockcoroutine_fn wrong_call

ptr_call

coroutine_fn *coro_fun_ptr

Figure 4. Function call graph annotated by CoroCheck

extern void coroutine_fn coro();
extern void blocking_fn block();

void native() { };
void coroutine_fn (*coro_fun_ptr)(void) = &coro;

void coroutine_fn spurious() { }
void coroutine_fn good() { coro(); native(); }
void missing() { coro(); }
void coroutine_fn call_missing() { missing(); }
void blocking_fn wrong() { good(); }
void call_block() { block(); }
void coroutine_fn wrong_call() { coro(); block(); }
void ptr_call() { coro_fun_ptr(); }

Figure 3. Input program for Figure 4

the expression used to perform the call instead (eg. coroutine
*coro fun ptr).

Mismatching nodes, corresponding to either spurious or missing
annotations, are ouput with dashed, red lines. For example, from
top-left to bottom-right in Figure 4, the function wrong should be
annotated with coroutine_fn instead of blocking_fn because it
calls the coroutine function good; the function spurious does not
call any coroutine function, so it does not need a coroutine_fn
annotation; the function ptr_call should be a coroutine functions
because it performs an indirect call to a coroutine function through
the function pointer coro_fun_ptr; and the function missing
should be annotated as well since it calls the coroutine function coro.
Note that the function call_missing is not flagged as spurious,
since it calls missing which should be a coroutine function (even
though it lacks the proper annotation). Finally, dashed, red lines are
also used for forbidden edges from coroutine functions to blocking
functions, such as wrong_call calling block.

Files from a real-world program can contain a huge number
of functions, making the call graph cluttered and challenging to
decipher. To focus on the relevant information, CoroCheck removes
every native function defined outside of the current file from the
graph. This strategy removes many leaves, in particular all functions
from the libc standard C library. For example, when applied to
block.c, it removes more than half of the nodes and edges (from
657 nodes and 781 edges down to 316 nodes and 302 edges).

Type cast and assignment verification As an additional safety
check, unrelated to call graph analysis, CoroCheck ensures that
coroutine annotations are not lost when function pointers are type-
cast or assigned to a variable. This is relatively straightforward
thanks to CIL making every type cast explicit in its intermediary
AST.

4.3 An example of coroutine-safety violation
In this section, we show that annotations are significant even in the
original QEMU, and that a missing annotation can cause (and has
in fact caused) a serious and hard-to-find bug.

Coroutine locks (CoMutex) are built on top a coroutine queues
(CoQueue). The basic operations are to enqueue the current corou-
tine, which transfers control to its caller (qemu_co_queue_wait),
and to restart the next coroutine in a queue (qemu_co_queue_next).
Locking operations are thin wrappers around these functions
which check if the CoMutex is already locked before proceeding
(qemu_co_mutex_lock and qemu_co_mutex_unlock). Figure 5a
gives an overview of the file implementing coroutine queues and
locks.

CoroCheck detects no less than six functions missing a corou-
tine annotation, and one (qemu_co_queue_run_restart) spuri-
ously annotated. These missing annotations caused a serious bug:
the code responsible for throttling disk I/O trusted them, and
called qemu_co_next in native context. This ultimately led to
calling qemu_coroutine_self in native context, which returned
an invalid coroutine pointer and caused a segmentation fault in
qemu_co_queue_do_restart.

Canet [9] fixed the segmentation fault two months later by
introducing qemu_co_enter_next, a native-mode counterpart to
qemu_co_queue_next. However, as shown on Figure 5b, quite
a few annotations are still missing or incorrectly placed after the
patch. Without an automated verification tool such as CoroCheck, it
is probably only a matter of time before the wrong function is used
again by mistake in another part of QEMU.

4.4 Evaluation
We have no doubt that it would have been much less likely to obtain
fully correct annotations in the short time-frame of our study without
using CoroCheck. Although this is but a subjective impression,
the figures shown in Table 1 give a better idea of the amount of
work required. Compared to the correctly annotated cpc branch,
the original master branch lacks more than 70 % of annotations.
We firmly believe that bug-free annotations cannot be reached in a
project of this scale without automated, static verification tools.

Table 1. Coroutine annotations in QEMU
QEMU branch master cpc

coroutine fn in .h files 31 100
in .c files 127 421

Hybrid functions (qemu in coroutine) 6 1

A few files non-essential files have not been annotated yet,
hence the remaining hybrid function.



qemu_co_queue_do_restart

coro qemu_coroutine_self coro qemu_coroutine_yield

coro qemu_co_queue_waitcoro qemu_co_queue_wait_insert_head

qemu_co_queue_next qemu_co_queue_restart_all coro qemu_co_mutex_lock

coro qemu_co_mutex_unlock

qemu_co_rwlock_rdlock qemu_co_rwlock_wrlock

qemu_co_rwlock_unlock coro qemu_co_queue_run_restart

(a) Before Canet’s patch

qemu_co_queue_do_restart

coro qemu_coroutine_self coro qemu_coroutine_yield

coro qemu_co_queue_waitcoro qemu_co_queue_wait_insert_head

coro qemu_co_queue_next coro qemu_co_queue_restart_all

qemu_co_enter_next

coro qemu_co_mutex_lock

coro qemu_co_mutex_unlock

qemu_co_rwlock_rdlock qemu_co_rwlock_wrlock

qemu_co_rwlock_unlock coro qemu_co_queue_run_restart

(b) After Canet’s patch
Note: the graph has been slightly simplified, and we use coro instead of coroutine fn to keep it readable.

Figure 5. Function call graph from qemu-coroutine-lock.c, annotated by CoroCheck

5. Continuation-Passing C
Continuation-Passing C (CPC) [24] is an extension of the C lan-
guage to write concurrent programs. The programmer writes syn-
chronous code in threaded style, using common synchronisation
techniques such as condition variables. This code is then automat-
ically transformed into an equivalent standard C program written
in asynchronous, event-driven style. Our previous experiments on
small to medium-sized programs have shown that the translated
code is at least as efficient as stack-based thread implementations,
while providing a significantly smaller memory footprint [23, 25].
However, CPC had never been tested on programs as large as QEMU
before this case study.

The CPC programmer uses a superset of the C language that
we call the CPC language. It extends C with two keywords: cps to
annotate cooperative functions, and cpc_spawn to execute them in
a new thread; it implements half-a-dozen synchronisation primitives
(cpc_yield, cpc_sleep, etc.); and it provides a moderate amount
of syntactic sugar to write common concurrency idioms in a concise
way. As we have seen in Section 1, a CPC program is compiled in
two steps:

1. The CPC translator first applies a series of source-to-source
transformations to convert the original program into an equiv-
alent one written in continuation-passing style. The resulting
code is compiled by a C compiler, such as GCC.

2. This compiled code is then linked with the CPC runtime, or,
in the context of this paper, with a new coroutine backend for
QEMU based on continuations (Section 6.3).

In the rest of this section, we give an overview of the compilation
technique used by the CPC translator on a small example. More
details, including proofs of correctness, are available in a previous
article [24].

5.1 The CPC compilation technique
The CPC translator is structured in a series of proven source-to-
source transformations, which turn a threaded-style CPC program
into an equivalent event-driven C program. Boxing first encapsulates
a small number of variables in environments. Splitting then splits
the flow of control of each annotated function into a set of nested
functions. Lambda lifting removes free local variables introduced
by the splitting step; it copies them from one nested function to the
next, yielding closed nested functions. Finally, the program is in a
form simple enough to perform a one-pass partial CPS conversion.
The resulting continuations are used at runtime to schedule threads.

Consider the following function, which counts seconds down
from an initial value x to zero.

cps void countdown(int x) {
while(x > 0) {

printf("%d\n", x--);
cpc_sleep(1);

}
printf("time is over!\n");

}

This function is annotated with the cps keyword to indicate that it
yields to the CPC scheduler. This is necessary because it calls the
CPC primitive cpc sleep, which also yields to the scheduler. In
the rest of this article, we call such functions cps functions.



We show below how splitting, lambda lifting and CPS conversion
transform the function countdown. The boxing pass has no effect
on this example because it only applies to address-taken variables
(the address of which is retained by the “address of” operator
&). It is necessary in the general case to transform address-taken
stack variables into heap variables, because lambda-lifting and
CPS-conversion passes duplicate stack variables, which invalidates
pointers storing their address.

5.2 Splitting
The next transformation performed by the CPC translator is split-
ting. Splitting has been first described by van Wijngaarden for Al-
gol 60 [42]. It translates control structures into mutually recursive
functions.

Splitting is done in two steps. The first step consists in replacing
every control-flow structure, such as for and while loops, by its
equivalent in terms of if and goto.

cps void countdown(int x) {
loop:
if(x <= 0) goto timeout;
printf("%d\n", x--);
cpc_sleep(1);
goto loop;

timeout:
printf("time is over!\n");

}

The second step uses the fact that goto are equivalent to tail
calls [39]. It translates every labelled block into an nested function,
and every jump to that label into a tail call (followed by a return)
to that function.

cps void countdown(int x) {
cps void loop() {

if(x <= 0) { timeout(); return; } /* (1) */
printf("%d\n", x--);
cpc_sleep(1); loop(); return; /* (2) */

}
cps void timeout() {

printf("time is over!\n"); return; /* (3) */
}
loop(); return;

}

Splitting yields a program where each cps function is split in
several mutually recursive, atomic functions, very similar to event
handlers. Additionally, the tail positions of these nested functions are
always one of the following three cases (numbered in the previous
example):

1. a tail call to another cps function (eg. timeout),

2. a call to an external cps function (cpc sleep) followed by a tail
call to an nested cps function (loop),

3. or a single return statement with no preceding call to a cps
function.

This restricted form, that we call CPS convertible form, provides
strong enough guarantees to enable a correct and straightforward
CPS conversion at a later stage.

Another effect of splitting is that variables bound in the original
outer function appear free in the nested ones. For instance, the
variable x is free in the function loop above. Because C does
not support nested functions, we need a pass of lambda lifting to
eliminate those free variables.

5.3 Lambda lifting
The CPC translator makes the data flow explicit with a lambda-
lifting pass. Lambda lifting, also called closure conversion, is a
standard technique introduced by Johnsson [22] to remove free

variables. It is also performed in two steps: parameter lifting and
block floating.

Parameter lifting binds every free variable to the nested function
where it appears (for instance, x is bound to loop on line (1) below).
The variable is also added as a parameter at every call point of the
function (lines (2) and (3)).

cps void countdown(int x) {
cps void loop(int x) { /* (1) */

if(x <= 0) { timeout(); return; }
printf("%d\n", x--);
cpc_sleep(1); loop(x); return; /* (2) */

}
cps void timeout() {

printf("time is over!\n"); return;
}
loop(x); return; /* (3) */

}

Block floating is then a trivial extraction of closed, nested functions
at top-level.

Note that because C is a call-by-value language, lifted parameters
are duplicated rather than shared. Therefore, this transformation is
not correct in general: mutating a copied parameter would leave the
original one intact, which could in principle be observed and yield
different results. It is however sound in the case of CPC because
lifted functions are always called in tail position (Section 5.2):
they never return, which guarantees that at most one copy of each
parameter is reachable at any given time [24, Section 6].

5.4 CPS conversion
Finally, the control flow is made explicit with a CPS conversion [34,
40]. The continuations store callbacks and their parameters in a
regular stack-like structure cont with two primitive operations:
push to add a function on the continuation, and invoke to call the
first function of the continuation.

cps void loop(int x, cont *k) {
if(x <= 0) { timeout(k); return; }
printf("%d\n", x--);
cpc_sleep(1, push(loop, x, k)); return;

}
cps void timeout(cont *k) {

printf("time is over!\n");
invoke(k); return;

}
cps void countdown(int x, cont *k) {

loop(x, k); return;
}

Just like lambda lifting, CPS conversion is not correct in general
in an imperative call-by-value language, because variables are
duplicated to be stored on the continuation. It is however correct in
the case of CPC, for reasons similar to the correctness of lambda
lifting [23, Chapter 5].

6. CPS-converting QEMU
Our continuation-based backend for QEMU is made of two parts,
similar to the two-step approach used to compile CPC programs
(Section 5). We first need to perform a CPS conversion of every
annotated coroutine function, and then use the continuations intro-
duced by the CPC translator to implement QEMU’s coroutine API
(Figure 1).

In this section, we study the challenges associated with these
two steps: parsing correctly such a large-scale base of C code (Sec-
tion 6.1), and defining CPS conversion as a C calling convention to
support indirect calls to CPS-converted functions (Section 6.2); then
implementing the runtime coroutine-cpc backend (Section 6.3).



6.1 Compiling QEMU with CIL
CPC is built on top of the C Intermediate Language (CIL) frame-
work [32]. CIL is a front-end for the C programming language
that facilitates program analysis and transformation. It parses and
typechecks an input program, and translate it into an equivalent,
simplified subset of C. In CIL, for example, expressions have no
side-effect and all looping constructs are normalised to a while(1)
loop with break statements. The programmer then manipulates this
simplified AST, which greatly reduces the number of cases that
must be considered. CIL finally outputs the resulting AST in a C file
which is handed over to the actual C compiler. A Perl script acts as a
drop-in replacement for GCC, automating these stages and making
it easy to compile existing projects through CIL.

Before attempting to translate coroutine functions with CPC, we
needed to make sure that the CIL front-end was able to correctly
parse and translate QEMU source code. Our very first step was
therefore to try and compile QEMU using CIL alone. Although CIL
is reasonably complete and well-tested, QEMU is a large project
with over 750 000 lines of C code, and it uses a wide range of C
features, including a number of non-standard GCC extensions.

While attempting to compile QEMU with CIL, we discovered
and fixed at least two major bugs, and several lacking features.
All those fixes and features are now included in CIL and will be
available in the next release.

Major bugs in CIL The most disconcerting CIL bug that we
encountered did not prevent QEMU from compiling. Instead, it
caused a crash of the guest operating system when we tried to start
a Linux 3.2 kernel with hardware virtualization disabled. Older
kernels seemed to work completely fine, as well as newer kernels
when virtualization was enabled. It turned out to be an erroneous
implementation in CIL of C rules for arithmetic conversion. This
fundamental bug had gone unnoticed for so long because it did
not produce observable effects except in some corner case on long
long integers, triggered in particular by QEMU’s emulation of
Intel’s SSE extensions.

We also found a bug in initialization of arrays: CIL discarded
trailing empty initializers. For instance, {{.x = 3}, {.x = 5},
{} } was interpreted as an array of size 2 instead of 3; the last
initializer is equivalent to {.x = 0} in that case. This idiom is used
extensively in QEMU to mark the end of arbitrarily sized arrays of
complex structures without setting explicitly each field of the last
element to 0.

A number of more minor bugs were also fixed along the way.
The Perl wrapper script in particular needed to be updated because
it failed to pass through some GCC options.

New C features and GCC extensions We added support for flexi-
ble array members, a C99 feature allowing an array of unspecified
size to be the last member of a C structure. This is used in several
places in QEMU, to allocate an array of data and some meta-data in
a compact, cache-efficient way.

We also improved support of GCC extensions. We added many
new GCC builtins, including concurrency operations for the C11
memory model. We implemented first-class support for case-ranges,
allowing to write switch statements with conditionals of the form
case 0x0000 ... 0xc000; CIL already accepted that extension,
but translated it into an exhaustive list of all cases, which did not
scale to very large ranges.

As an aside, some GCC extensions are not available on every
platform, and QEMU provides fall-back mechanisms for those cases.
This has allowed us to disable two extensions that would have
required an unreasonable amount of work to be added to CIL: 128-
bit integers (int128 t) and SSE vector instructions.

6.2 Indirect coroutine calls
The next stumbling block on the path to CPS conversion was
indirect coroutine calls. In the original CPC implementation, the
cps annotation is a new keyword defined as a function specifier.
This means that it applies to the function being annotated, rather
than to its type. This unfortunate decision, taken at an early stage
in CPC design, forbade cps annotations at the type level, and
made it impossible to apply a CPS conversion to QEMU source
code, because of the pervasive use of coroutine function pointers
(Section 3.3). In this section, we argue that coroutine annotations
denote a calling convention [21], and we detail how to implement
this approach in CPC.

Native functions need to agree on a calling convention, often
defined in the Application Binary Interface (ABI) of the architecture
they are compiled for, for instance to decide how to pass function
parameters (on the stack or via register), or whether stack frames
should be cleaned by the caller or the callee. Even given a particular
language and architecture, several calling conventions might coexist.
For instance, on Intel 386, the cdecl convention passes every
argument on the stack, whereas the fastcall convention passes the
first two arguments in registers ECX and EDX.

There is no standard way in C to specify the calling convention
associated to a function or a function pointer. Fortunately enough, to
ease interoperability, most compilers provide a means of specifying
the calling convention explicitly on a per function. The de facto
standard is to use attributes, a generic mechanism which allows to
annotate types, function declarations and even expressions.

Figure 6 shows how function attributes for calling conventions
are used in practice. The attribute can be applied to a function
prototype, like f (1), or to the type of a function pointer like p (2).
Tracking the calling convention within the type of each pointer then
allows to perform indirect calls with the correct convention (4). The
assignment of a value to the pointer (3) and the implementation
of a prototype (5) are checked by the compiler, which will issue a
warning or an error if an incompatible calling convention is used; in
our example, line (3) is correct but (5) is forbidden.

int __attribute__((fastcall)) f(int a, int b); /* 1 */
int __attribute__((fastcall)) (*p)(int a, int b); /* 2 */
p = &f; /* 3 */
int z = (*p)(1,2); /* 4 */
int f(int a, int b) { return a + b; } /* 5 */

Figure 6. Calling convention attributes

Those are exactly the properties that we need to keep track
of coroutine annotations within types, and to be able to perform
indirect CPS-converted calls. As a matter of fact, CPC actually
defines a calling convention for cps functions, specifying how to
store parameters on the continuation and how to pass return values
to the next function. This calling convention is precisely the set
of assumptions used by the CPC runtime to interface primitive
functions with the code produced by the CPC translator.

Implementing coroutine annotations with function attributes
rather than the cps keyword simplified the lexing and parsing stages,
and made the internal data structures and transformations used by the
CPC translator less ad-hoc. Backward-compatibility merely required
to add a single line to the runtime header:

#define cps __attribute__((cps))

We encountered two technical difficulties. First, we needed
to be very careful to be compatible with the way gcc and other
compilers implement calling-convention function attributes. The
rules for positioning are very liberal, and not formally defined in
the documentation of compilers: in general, attributes apply to the
nearest component of the type, but in the case of calling convention



attributes, they can be placed almost anywhere within the return
type and still apply to the function type as a whole. Then, calling-
convention attributes also need to be treated differently than other
attributes when merging the attributes of a prototype with those of
the implementation: because they create a constraint on the caller,
it is essential to ensure that the calling convention is the same in
all cases to ensure a consistent usage between the header and the
implementation (Figure 6, line 5).

6.3 The coroutine-cpc backend
The last step of the QEMU/CPC project is coroutine-cpc, a new
implementation of coroutines for QEMU based on the continuations
introduced by the CPC translator.

One important requirement was to write a simple, self-contained
backend: having as few changes to QEMU as possible, except for the
missing coroutine annotations that are dealt with separately, means
that it is easier to track the evolution of QEMU, and to potentially
merge our backend at some point in the future. The implementation
of coroutine-cpc is short, with less than 200 lines of portable,
carefully-optimised code. It also limits the amount of new code
to the minimum, by re-using code from the original CPC runtime
implementation for each low-level management task: allocating,
deallocating, resizing continuations, and passing a return value to
the next continuation [23, Section 3.2.4].

The QEMU coroutine API and the CPC runtime are very close,
offering the same kind of primitives. One noticeable difference is
that QEMU exposes coroutines, providing an explicit handle for
the programmer to schedule them, whereas CPC exposes threads
with an implicit scheduler and no thread handle. The interface
of the former is therefore lower-level but slightly more expres-
sive than that of the latter. As a result, fewer native cps functions
need to be implemented for the QEMU API than for the CPC
runtime: functions such as cpc_sleep or cpc_io_wait need to
hook into the CPC scheduler, whereas they are built independently
from the backend in the case of QEMU, on top the basic corou-
tine API. For the coroutine-cpc backend, we only need to im-
plement four QEMU-specific functions: qemu_coroutine_enter,
qemu_coroutine_yield, qemu_coroutine_self and qemu in
coroutine.

Entering and yielding coroutines The implementation of the
function qemu_coroutine_enter initialises the continuation if
this is the first time it is entered, and starts a trampoline loop to run
it (see Figure 7). The function pointer on top of the continuation
is extracted (2), and called with the rest of the continuation as a
unique parameter (4); it returns a new continuation, and the process
is repeated until reaching the empty continuation (1) or a call to
qemu_coroutine_yield (3).

while(1) {
/* (1) If continuation is empty, return */
if (k->length == 0) return k;
/* (2) Otherwise, extract function pointer */
k->length -= sizeof(cpc_function *);
f = *(cpc_function **)(k->c + k->length);
/* (3) Intercept yield if necessary */
if (f == qemu_coroutine_yield) return k;
/* (4) Otherwise, run the extracted function */
k = (*f)(k);

}

Figure 7. Trampoline loop for continuations

The usual way to implement yield in continuation-passing style
is to write the CPS-form directly by hand, returning a null pointer
to indicate that there is no continuation left to execute because the

coroutine has yielded (and adapting the trampoline loop accord-
ingly). This approach is not convenient in the case of QEMU be-
cause qemu_coroutine_yield is defined in a supposedly backend-
independent way, which in fact relies implicitly on a stack-switching
implementation. To work-around this limitation without modi-
fying files outside of coroutine-cpc, we intercept the call to
qemu_coroutine_yield in the trampoline loop, by comparing
function pointers (Figure 7).

Dynamic bookkeeping To implement the introspection functions
qemu_coroutine_self and qemu_in_coroutine, all existing
QEMU backends use a thread-local variable to keep track of
the current coroutine. This variable is updated on each coroutine
switch by qemu_coroutine_enter. As it turns out, this dynamic
bookkeeping is no longer necessary for coroutine-cpc.

It is enough to annotate these functions with the special attribute
cpc_need_cont. Then, the CPC translator passes them the current
continuation directly when they are called from coroutine context,
and a null pointer otherwise. In fact, once hybrid functions have been
eliminated, qemu_in_coroutine becomes completely redundant
with coroutine annotations, its use being subsumed by the static
verification of CoroCheck.

In addition to making the code simpler and safer, we measured
a speedup of up to 10 % in micro-benchmarks when we removed
dynamic bookkeeping in coroutine-cpc.

7. Experimental results
In this section, we compare the performance of coroutine backends
on micro-benchmarks (Section 7.1) and evaluate the performance
impact of CPS conversion on a typical QEMU work-load (Sec-
tion 7.2).

7.1 Micro-benchmarks
To evaluate the efficiency of basic coroutine operations, we use three
micro-benchmarks from the test suite of QEMU.4 Lifecycle repeat-
edly creates an empty coroutine, which is entered then destroyed
immediately. Nesting repeatedly creates 1 000 nested coroutines,
each of them incrementing a shared counter, then creating and en-
tering the next coroutine. Yield repeatedly enters a single coroutine
which decrements a counter, then yields immediately.

We test the continuation-based backend cpc, the stack-switching
backends ucontext and sigaltstack, and the thread-based back-
end gthread. All benchmarks are compiled directly with gcc, ex-
cept the cpc backend which uses the CPC translator; we have veri-
fied that the results are unchanged when compiling the other back-
ends with the CIL front-end. The results are shown in Table 2.

Because allocating coroutines is a costly process for most
backends, QEMU uses a pool of 64 coroutines: instead of freeing
coroutines that have completed, they are kept in a linked-list, and
re-used when a new coroutine is needed. To measure the impact
of allocation, we perform each benchmark with and without the
coroutine pool (except for gthread, which does not support the
pool at all).

The cpc backend is consistently faster than every other backend.
Allocation is faster because continuations are resized dynamically
when needed, whereas other backends need to allocate a large chunk
of memory at once. As a result, the coroutine pool is extremely
effective for other backends, but turns out to slow down cpc in the
nesting benchmark: when the number of coroutines is one order of
magnitude larger than the size of the pool, the cost of managing the
pool becomes higher than its benefits. As expected, the pool has

4 Our benchmarks scripts are available online: http://github.com/
kerneis/cpc-qemu-bench/.

http://github.com/kerneis/cpc-qemu-bench/
http://github.com/kerneis/cpc-qemu-bench/


Table 2. Speed of basic coroutine operations for various backends
Lifecycle Nesting Yield

Pool no yes no yes no yes

cpc 75 54 94 125 19 19
ucontext 464 108 3 899 682 83 84
sigaltstack 1 796 108 5 843 1 988 85 87
gthread 10 802 — 2 826 905 — 5 703 —

All speeds are in nanoseconds, averaged over 10 runs (except
gthread-nesting, over 5 runs) of millions of iterations, on an
8-core Intel Xeon E5-1620 at 3.6 GHz. For nesting, the time is
per nested coroutine, hence comparable to lifecycle directly.

almost no impact for yield, since only one coroutine is used in this
test.

We are not sure exactly why the gap is so large between the
lifecycle and nesting benchmarks for most backends: both tests
perform exactly the same task, except that the latter uses more
coroutines simultaneously and maintains a shared counter between
coroutines. The memory pressure is certainly higher, but it is not
clear why it slows down the creation of each coroutine so much,
especially when the pool is disabled anyway. We believe that cache
effects are involved here, which would explain why cpc performs
much better with its small memory footprint.

The result of the yield benchmark is not surprising. Coroutine
switching is a mere function return in the case of cpc, hence faster
than the signals, stack-switching mechanisms or locks used by the
other backends.

7.2 Macro-benchmarks
The main downside of CPS conversion is that it adds an overhead to
each call to a CPS-converted function. It is hard to predict the global
overhead on a large program because the splitting pass introduces a
number of calls to CPS-converted functions which varies with the
complexity of the control-flow and the position of cooperation points.
While the CPC translator tries to limit the number of inserted calls by
performing incremental transformations, we need to perform macro-
benchmarks to evaluate the overall effectiveness of our approach.

Since coroutines are mainly used in the block layer implementa-
tion, we need to generate a lot of disk I/O from the virtual machine.
We use a virtualized guest OS with Debian “squeeze”, ran on a
Debian “squeeze” host on an 8-core Intel Xeon 3.6 GHz, and fio to
generate various intensive disk accesses patterns, with up to 500 si-
multaneous readers or writers. The guest is installed in a disk image
using QEMU’s qcow2 disk format. We take particular care to dis-
able disk caches in both the guest OS and QEMU’s disk layer, to
make sure each access in the guest translates to an actual read or
write of the image file on the host; disk cache is kept enabled on the
host. We compare the mean and median access time for each access
pattern and coroutine backend.

Unfortunately, none of the coroutine backend performs signifi-
cantly faster or slower than the others in these macro-benchmarks.
To get a finer-grained understanding of the results, we profile each
QEMU instance with the Linux perf utility, which uses hardware
performance counters provided by the CPU. As it turns out, corou-
tines are not at all on the critical path when emulating or virtualizing
a whole system: slightly less than 1 % of the execution time is spent
in coroutine-related functions, and the differences between backends
end up being smaller than the variability of disk-access times.

However, perf allows for a fine-grained analysis of the time
spent in each function, with some measurement uncertainty due
to its event-sampling approach. Therefore, it is possible to isolate
the most time-consuming coroutine function in perf results (for

instance qcow2 co writev for a write benchmark), and compare
its ranking for the various coroutine backends.

This is a tedious process that we did not manage to automate:
since the splitting pass of the CPC translator creates new coroutine
functions, one needs to sum those to recover the global time spent in
the original function. In the few runs that we analysed, the coroutine
functions split by the CPC translator did not take significantly more
time to execute. A likely explanation is that coroutine functions
frequently yield in practice; the time wasted in the trampoline loop
is negligible compared to the overhead of entering and switching
coroutines for other backends.

Despite our efforts, these macro-benchmarks are frustratingly
inconclusive. Profiling at least seems to indicate that CPS conversion
does not generate a significant overhead in the case of QEMU. This
is in line with the conclusions of our previous experiments on smaller
programs [25].

8. Conclusions
We have applied a conversion to continuation-passing style to
QEMU, a large open-source project written in C with heavy use
of function pointers. Then, we have used these continuations to
implement an alternative coroutine backend, both more portable
and much faster than the existing ones. We have also developed
CoroCheck, a tool for the static analysis of coroutine annotations,
and used it to correct several hundreds of missing annotations in
QEMU.

Our work demonstrates that static analysis of coroutines helps
ruling out some actual bugs. It also shows that CPC is flexible and
mature enough to scale efficiently to very large programs, and to a
model (coroutines) that it was not initially designed to handle.

Beyond the scientific results, this is the story of a successful col-
laboration between an open-source project and academic research.
Over the course of a few months, we have started a fruitful relation-
ship, improving the state of coroutines in QEMU, developing a tool
that they can use as part of their test suite, and fixing many bugs
in CIL and CPC. We were certainly not the first, but we hope that
many others will come after us, and discover the mutual benefits of
scaling-up their techniques to real-world projects.
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